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Joint End-to-End Loss–Delay Hidden Markov Model
for Periodic UDP Traffic Over the Internet

Pierluigi Salvo Rossi, Gianmarco Romano, Francesco Palmieri, and Giulio Iannello

Abstract—Performance of real-time applications on network
communication channels is strongly related to losses and temporal
delays. Several studies showed that these network features may be
correlated and exhibit a certain degree of memory such as bursty
losses and delays. The memory and the statistical dependence
between losses and temporal delays suggest that the channel
may be well modeled by a hidden Markov model (HMM) with
appropriate hidden variables that capture the current state of the
network. In this paper, an HMM is proposed that shows excellent
performance in modeling typical channel behaviors in a set of
real packet links. The system is trained with a modified version
of the Expectation-Maximization (EM) algorithm. Hidden-state
analysis shows how the state variables characterize channel dy-
namics. State-sequence estimation is obtained by the use of Viterbi
algorithm. Real-time modeling of the channel is the first step to
implement adaptive communication strategies.

Index Terms—Hidden Markov models (HMM), loss-and-delay
analysis, network models.

I. INTRODUCTION

COMMUNICATING over the global network will continue
to characterize the coming years with growth in connec-

tivity and in types of data links. Wireless networks, satellites,
cable modems, routers and all kinds of communication devices
will constitute the very heterogeneous makeup of most connec-
tions. Moreover, communication often happens with very little
control over congestion and information accuracy.

In real-time communications, several strategies have been
proposed in the literature to improve the performance of trans-
port protocols like Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP), e.g., forward-error correction
(FEC) strategies based on the use of robust transforms [14]
or redundant codes. These strategies are more or less tuned to
the source, but performance assessment is difficult unless a
reasonable channel model is available. Usually a very simple
lossy channel is assumed without any specific reference to time
dependence or time variations.
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Our work attempts to build a model framework for a generic
end-to-end connection. Too many details would be necessary to
keep into account congestion, protocols, lossy links, noisy chan-
nels, etcetera. However, a global equivalent end-to-end model
that could be easily estimated via low-speed two-way connec-
tions seems to be viable. Since most network connections from
the MAC-layer up on the OSI stack are based on packets, such
a mode will be our reference framework: packets are loaded at
the transmitter and may arrive at the receiver after a delay, or
be totally lost. In real-time communication packets that arrive
after a maximum delay could also be considered lost. In addi-
tion, packets that contain errors are usually either corrected or
disregarded and are therefore not considered in our modeling.

We want to model the system in a way that carries infor-
mation on current congestion that may determine variable loss
rates and average delays. Loss phenomena often show bursty
behavior, i.e., they cannot be thought of as a memoryless sto-
chastic process. Several works [7], [11], [12] showed that tem-
poral delays seem to be not well modeled as independent iden-
tically distributed (i.i.d.) random variables, but present a certain
degree of memory. In real communication networks, losses and
delays are strongly correlated: It has been observed [12] that in
proximity of a loss, larger delays tend to occur.

The works of Gilbert and Elliott [1], [2] on modeling
burst-error channels for bit transmission showed how a simple
two-state hidden Markov model (HMM) was effective in char-
acterizing some real communication channels. As in the case
of bit-transmission channels, end-to-end packet channels show
burst–loss behavior. Jiang and Schulzrinne [12] investigated
lossy behavior of packet channels, finding that a Markov model
is not able to appropriately describe channel interloss behavior.
They also found that delays manifest temporal dependency, i.e.,
they should not be assumed to be a memoryless phenomenon.
Salamatian and Vaton [13] found that an HMM trained with
experimental data seems to capture channel loss behavior and
found that an HMM with two to four hidden states fits well
with experimental data. Liu, Matta, and Crovella [15] used an
HMM-based loss-delay modeling of TCP traffic in order to
infer losses nature in hybrid wired/wireless environments. They
found that such a kind of modeling can be used to control TCP
congestion avoidance mechanism. Similar works have been
done by Turin, Sondhi, Zorzi et al., and van Nobelen [6], [8],
[10] on error sources for digital channels and wireless fading
links.

These works suggest that a Bayesian state-conditioned model
may be effective in capturing the dynamic behavior of losses
and delays on end-to-end packet channels [18], [19], [22]. The
definition of such a model is highly desirable for designing and
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Fig. 1. End-to-end packet channel.

evaluating coding strategies. Furthermore, the possibility of
learning online the parameters of the model opens the way to
design efficient content-adaptive services. Hidden states of the
model represent different working conditions of the channel.
Current state knowledge and prediction of state transitions may
enable a powerful characterization of future channel behavior,
which could be used to implement content-adaptive strategies
for coding (e.g., multiple description coding) and scheduling
(e.g., traffic shaping).

In this paper, we propose a comprehensive model that jointly
describes losses and delays. The model is an HMM trained with
a version of the Expectation–Maximization (EM) algorithm to
capture channel dynamics. A set of simulations based on mea-
surements obtained on real packet links confirms how effective
the model is and how hidden states (automatically found) can
be significant.

The rest of the paper is organized as follows. In Section II,
we describe the proposed model; the algorithm for finding the
model parameters is presented in Section III. In Section IV, we
present how the model works on real communication channels,
specifically in Sections IV-A-1) and IV-A-2) we describe, re-
spectively, the training step and the capability of generalization
of the model. Some conclusive remarks are given in Section V.

II. THE MODEL

Our reference model is shown in Fig. 1: a periodic source
traffic with interdeparture period and fixed packet size of
bits. The system data rate is b/s. The network ran-
domly cancels and delays packets according to current conges-
tion. Transmitted packets are numbered and
are the arrival time and the accumulated delay of the th packet,
respectively, i.e., .

Memory and correlation presence in loss-and-delay dynamics
of the communication channels suggest the introduction of a
hidden-state variable carrying information about link conges-
tion. The state variable stochastically influences losses and de-
lays. It is hidden because our knowledge about it can only be
inferred from observation of losses and delays, and there is no
way to access it directly. We will see later how the learning algo-
rithm automatically “discovers” the hidden states and how they
can be associated to various levels of congestion. Since we as-
sume the packet rate to be constant, our model is synchronous
to departure time.

Let us denote the state of the link at time step , with
, where is the th state, among possible

ones. is the delay for the th packet, and is
a binary variable where and correspond, respectively, to
absence or presence of a loss. It should be noted that in the
presence of a loss, the delay has no real value. Such an event
could be associated to infinite delay, but for better modeling we

Fig. 2. Bayesian model for packet channel.

Fig. 3. Hidden Markov model.

distinguish the situation with from the lost packet, and
we attribute to lost packets the fictitious negative value

, i.e., .

Our reference Bayesian model is shown in Fig. 2, where the
arrows represent statistical dependence among variables. More
specifically, the set of parameters characterizing the model is

, defined as follows:

• is the state transition matrix, i.e.,

• is the state-conditioned loss proba-
bility vector, i.e.,

• is the state-conditioned delay probability density
function (pdf), i.e.,

The model can be reduced to an HMM, as seen in Fig. 3,
with a hidden variable and an observable variable that

represents jointly losses and delays as ,

summarized as follows:

• is a discrete random variable whose dynamic behavior
is governed by the transition matrix ;

• is a hybrid random variable that, given , is
characterized by the mixed pdf

(1)

Shown in Fig. 4, is a hybrid variable obtained as a mixture
of two components (one continuous, the other discrete), where
there is a probability mass concentrated in 1 to model losses.
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Fig. 4. State-conditioned pdf for the hybrid variable.

This allows a compact representation with nonoverlapping dis-
tributions. The continuous component describes network delay
behavior in the absence of losses, whereas the discrete compo-
nent describes losses.

If is the steady-state probability dis-
tribution, i.e., , the average loss
probability and the average delay of the model are

(2)

where is the state-conditioned mean delay.

III. LEARNING THE MODEL PARAMETERS

The model, proposed to account for the time-varying nature
of the channel behavior, would be just speculative if we did not
have a technique for learning the model parameters from on-
line measurements. Furthermore, such a model would be useful
only if the channel holds on the same stochastic behavior ob-
served during the training step, i.e., the channel alternates dif-
ferent short-term behavior showing a long-term stationarity. In
this case, the model has generalization capability and is useful
for data transmission characterization. Although in a real sce-
nario the channel stationarity cannot be assumed a priori with
certainty, we assume that stationarity holds for a time interval
much longer than the time needed to perform the model training.
The experiments we performed, described in Section IV, seem
to confirm that this assumption is realistic in practice, showing
that a valid data window for the training procedure is less than
10% of the stationarity window (more precisely, in the examples
in Sections IV-A and IV-B, it is 3% and 8%, respectively).

The EM algorithm [9] is an optimization procedure that al-
lows learning of a new set of parameters for a stochastic model
according to improvements of the likelihood of a given sequence
of observable variables. For structures like the HMM of Fig. 3
this optimization technique reduces to the Forward–Backward
algorithm [3]–[5] studied for discrete and continuous observ-
able variables with a broad class of allowed state-conditioned
pdf’s.

More specifically, given a sequence of observable variables
, referred to as the training sequence, we

want to find the set of parameters such that the likelihood of
the training sequence is maximum, i.e.,

The Forward–Backward algorithm is an iterative procedure
looking for a local maximum of the likelihood function, which
typically depends on the starting point . When necessary, re-
peated starts with different initial conditions provide the global
solution. The algorithm works applying iteratively a transfor-
mation such that .

Several works [7], [11], [16] showed that delay statistics on
real Internet paths fit well a shifted Gamma shape. Our choice of
state-conditioned pdf’s for modeling delays is a Gamma distri-
bution with only two parameters, in order to have a good “fitting
freedom” and keep the number of parameters to be estimated
low, as follows:

Therefore, , where and
or equivalently , where
and denote state-

conditioned delay means and standard deviations, respectively,
i.e., from (3)

The algorithm works as follows.

1) Set input parameters: This includes the training
sequence , the number of states ,
and the stopping parameter .

2) Initialization step: The algorithm is initialized
by a symmetric model, which we will refer to as the
starting model, i.e.,

where is the maximum measured delay.
Other initializations are possible. We have adopted this
one for simplicity and to provide a starting point that is
not too far from the solution.

3) Iterative step: The transformation is
iteratively applied until the stopping condition

is verified.
The transformation is based on computation of the for-

ward and backward partial likelihoods, respectively

where and . More specifically, denote
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which in our case becomes

(3)

The update is based on the following equa-
tions:

The problem of the Dirac-impulse in the state-conditioned
pdf ((1) and (3)) is avoided by replacing the hybrid pdf
with the following modified function:

where is any pdf such that , to avoid over-
lapping supports between and . Obviously, while the
set will be adjusted by the iterative procedure,
will remain unchanged, as only its area is relevant. This means
that losses in the algorithm can be randomized according to .
In our algorithm, losses are simply randomized according to a
narrow uniform distribution around 1, i.e.,

otherwise

where is an arbitrary small number. The likelihood is evalu-
ated by .

It must be remembered that the implementation of the algo-
rithm requires proper scaling to avoid underflow [5].

IV. EXPERIMENTAL RESULTS

Measures of losses and delays have been performed on
real Internet channels (among Dipartimento di Informatica e
Sistemistica, Università di Napoli “Federico II”; Dipartimento
di Ingegneria dell’Informazione, Seconda Università di Napoli;
Università Campus Bio-Medico di Roma), using the software
Distributed-Internet Traffic Generator (D-ITG) [20].

D-ITG (a new version of Mtools [17]) can generate both
traffic at transport layer and “layer 4–7.” It implements both
TCP and UDP traffic generation according to several statistical
distributions both for interdeparture times and packet sizes.
D-ITG allows measurement collection from complex traffic
scenarios furnishing information about transmitted and received
packets. D-ITG was used to obtain loss–delay sequences of
synthetic periodic UDP traffic sent on real Internet channels
with background load present. We do not address the problem
of packet-delay estimation assuming that the accuracy of
measurements is acceptable. A little portion of the sequences

Fig. 5. Portion of a measured trace on a real network.

was used as the training sequence to learn model parameters.
Performances of trained model are tested on the remaining
portions of sequences. A portion of a loss–delay sequence is
shown in Fig. 5. Losses are indicated with negative values of

.
In the following, two examples are described. The experi-

ments reported here are not to be considered exhaustive, but they
suggest a very typical scenario in which losses and delays show
the usual “burstiness.”

A. Example I

The following example was performed in April 2003 on the
path between Dipartimento di Informatica e Sistemistica, Uni-
versità di Napoli “Federico II,” and Dipartimento di Ingegneria
dell’Informazione, Seconda Università di Napoli, in which the
interdeparture period is 5 ms, and the packet size is
8000 b, 1.6 Mb/s . The Internet path was composed of
six wired links (obtained by the use of traceroute). The
path has a bottleneck link of 2 Mb/s (nominal bandwidth). The
training step and the test step are described, respectively, in Sec-
tions IV-A-1) and IV-A-2), while Sections IV-A-3) shows the
performance of the trained models when considered as channel
simulators.

1) Training: Fig. 6 shows a typical trend of log-likelihood
evolution during our EM learning procedure. We have used a
training sequence of samples, which was used to
train models with two, three, and four states. The algorithm
convergence is reached after a few iterations, although very
small values for the likelihood are obtained.1 In our experi-
ments, 10 to 20 iterations are enough to reach convergence
such that the trained model guarantees sufficient generalization
capability. The complexity of the algorithm is linear with the
length of the training sequence [5]. Simulations with a Matlab
implementation of the algorithm run on a 600-MHz Athlon 4
processor took approximately 15 s.

1The likelihood can be thought as the probability to generate with a Monte
Carlo simulation the training sequence (1000 samples length). The scaling pro-
cedure, mentioned in Section III, has to be implemented in order to manage such
very small numbers whose computation exceeds the precision range of any ma-
chine [5].
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Fig. 6. Log-likelihood trend in the learning procedure (Example I).

TABLE I
AVERAGE AND TRAINING STATISTICS COMPARISON (EXAMPLE I)

It is worth noting that the length of the training sequence in-
dividuates a tradeoff for the computational complexity. In Sec-
tion III, we said that the model parameters learned during the
training step are useful within the stationarity horizon of the
channel, and this will be clarified in Section IV-A-2). However,
in a real scenario, where an adaptive mechanism has to be con-
sidered, the model parameters have to be relearned periodically
as the network environment can change dramatically. It is evi-
dent that reducing the length of the training sequence reduces
the complexity of the training algorithm, but it also results in a
stationarity horizon that is too short (e.g., only one a few modes
can be observed), meaning that the training step has to be run
more frequently. In this paper, we do not address the problem of
the optimum choice of the training sequence.

Table I summarizes the results of the learning procedure in
terms of the average statistics (see (2)), showing how the trained
models capture average statistics. It is worth noting that the av-
erage statistics do not necessarily match the ones of the training
sequence with very high accuracy. The trained models, even in
the case when high accuracy is not reached, match appropriately
the histogram of the training sequence. Furthermore, the trained
models mainly try to capture the statistical dependence existing
between loss and delays such as their memory and correlation,
as will be shown in the following.

Tables II–IV show the steady-state probability , the loss
probability , and the average delay for the th state.
They confirm an intuitive interpretation of the state that will be
more evident later, when the evolution of the state variable is
examined.

Fig. 7 shows the delay pdf’s before and after learning with
two-, three-, and four-state models in comparison to a delay his-
togram. The histogram clearly shows a multimodal behavior. It
is encouraging to see how well the model captures at increasing

TABLE II
STATE-CONDITIONED STATISTICS FOR A TWO-STATE MODEL (EXAMPLE I)

TABLE III
STATE-CONDITIONED STATISTICS FOR A THREE-STATE MODEL (EXAMPLE I)

TABLE IV
STATE-CONDITIONED STATISTICS FOR A FOUR-STATE MODEL (EXAMPLE I)

Fig. 7. Learning delays statistics (Example I): histogram of measured delays
(the bin size is 5 ms) and continues term of pdf of two-, three-, and four-state
starting (dashed line) and trained (solid line) models, respectively.

resolution the measured delay statistics as the number of hidden
states is increased.

Hence, to verify how the hidden-state variable captures
the current channel congestion, a Viterbi algorithm [5] has
been applied to the training sequence. We note again that the
Viterbi algorithm furnishes the most likely state sequence
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Fig. 8. State-sequence estimation (Example I): training sequence and two-,
three-, and four-state trained models, respectively.

Fig. 9. Correspondences among states of the trained models (Example I).

, i.e., the state sequence such that the a
posteriori probability is maximum.

Fig. 8 shows the temporal evolution of the training sequence
and the state sequences obtained by use of

the Viterbi algorithm on the previous two-, three-, and four-state
trained models. The trained models give state sequences that
follow loss–delay network behavior quite well.

With reference to Fig. 8, we would now like to furnish a qual-
itative interpretation of states automatically found. If is the
th state of the -state model, then the following occurs:

• the two-state model emerges to distinguish two situations:
for lower delays and fewer losses and for large

delays and many losses;
• the three-state model seems to use its states to distinguish

the same two situations as the previous model with
resembling , while is now split in two states:
for many losses and describing very high-delays sit-
uation;

• the four-state model distinguishes the same two situations
as the two-state model, but now each one of them is de-
scribed with two states: and , respectively, corre-
sponding to and for the high-delays/many-losses
situation, while for the low-delays situation or

too is split: describes low-delays and losses and
describes low delays and very few losses.

Fig. 9 synthesizes the correspondences we noted about states
of the trained models, i.e., the relations among the states of
different trained models related to the considered example

(the dotted lines highlight the corresponding states of dif-
ferent models). Let us denote , , and as the
steady-state probability, the loss probability, and the average
delay of the state , respectively. Let , and

, be the loss probabilities and the average delays
in the two situations previously inferred (low delays or few
losses, and larger delays or many losses) for the -state model;

and are the corresponding steady probabilities.
From Tables II–IV, the following equalities strengthen the

effectiveness of the various models, confirming the correspon-
dence, previously described, among hidden states as well as the
significance of the state variable .

131.14 ms

130.72 ms

153.52 ms

341.69 ms

350.65 ms

376.55 ms

where
and where and .

It is worth noting that the different modes found by the models
(especially in the four-state model) denotes different local be-
havior in terms of loss and delays. This means that in a TCP sce-
nario, the model could be used to distinguish between conges-
tion losses and error losses. Modification of the model in order
to work in a TCP scenario is an aspect that interests us.

2) Model Generalization: A trained model, to be useful, has
to be tested on data that was not seen during training. Such
generalization property has been verified for our model as it
matches also the future behavior of the channel.

Fig. 10 shows the log-likelihood of the previous two-,
three-, and four-state trained models. D-ITG was used to
obtain a loss–delay sequence of length 31 000, where the first

1000 samples constitute the training sequence. The re-
maining 30 000 samples were grouped in blocks of 1000
consecutive samples. Each block represents an element for the
test set, i.e., a test sequence.
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Fig. 10. Capacity of generalization of the model by means of the
log-likelihood (Example I).

Fig. 11. State-sequence estimation before learning (sequence n: 6, Example
I): test sequence and two-, three-, and four-state starting models, respectively.

The log-likelihood was evaluated for every test sequence. Cir-
cles and asterisks in Fig. 10 correspond to the log-likelihood for
test sequences evaluated, respectively, for starting and trained
models. It can be noted how the trained models exhibit an al-
most constant log-likelihood, showing how the channel can be
considered to have stationary statistical characteristics for that
time interval. Meanwhile, the starting models exhibit lower and
more variable values for log-likelihood.

Moreover, Figs. 11 and 12 show the hidden states of the
starting and trained models on a test sequence, the sequence

. Comparing state sequences from starting and trained
models, it can be noted how they assume a very different
behavior. In case of starting models, hidden states are strictly
dependent from instantaneous behavior of the channel, showing
a rapidly oscillating trend, while hidden states for the trained
models seem to capture well the state of the network on a larger
time scale, exhibiting a more stable trend.

All this confirms that a state is associated to a particular con-
gestion level of the channel, characterized by its own loss prob-

Fig. 12. State-sequence estimation after learning (sequence n: 6, Example I):
test sequence and two-, three-, and four-state trained models, respectively.

Fig. 13. State-sequence estimation before learning (sequence n: 21, Example
I): test sequence and two-, three-, and four-state starting models, respectively.

ability (depending on parameters ), by its own mean delay (de-
pending on parameters ), by its own duration in the state
itself (depending on parameters ), and by its own transition
probabilities into other states (depending on parameters ).

Figs. 13 and 14 refer to the sequence where the channel
statistics have changed, as suggested by Fig. 10, and the parame-
ters of the model are not the best estimate. However, the trained
models still seem to furnish some information with respect to
the starting models.

3) Generative Model: The trained models have also been
used as generators in order to simulate channel behavior in terms
of packet losses and delays. They seem to represent well channel
statistics, in term of throughput, autocorrelation, average loss,
and average delay. The throughput of the model was con-
sidered as the probability that a packet is delivered within the
maximum allowed delay
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Fig. 14. State-sequence estimation after learning (sequence n: 21, Example
I): test sequence and two-, three-, and four-state trained models, respectively.

Fig. 15. Synthesis model capability in terms of throughput, correlation, loss
and delay statistics, respectively (Example I), for two-state starting (dashed line)
and trained (solid line) models with respect to real data (point–solid line).

The starting and the trained models were used to generate
31 000 outputs, via Monte Carlo simulations, which were
grouped in blocks of 1000 consecutive samples. Each
block represents a synthetic sequence. Auto correlation, loss
probability, and average delay of the training sequence and of
synthetic sequences generated by the starting and the trained
models were evaluated. The autocorrelation of the
sequence was evaluated by use of the
following formula:

and only 50 samples of are considered, as for
the formula gives poor information because of the

decreasing number of used sequence samples. Figs. 15–17 show
the throughput, the autocorrelation, the loss probability, and the

Fig. 16. Synthesis model capability in terms of throughput, correlation, loss
and delay statistics, respectively (Example I), for three-state starting (dashed
line) and trained (solid line) models with respect to real data (point–solid line).

Fig. 17. Synthesis model capability in terms of throughput, correlation, loss
and delay statistics, respectively (Example I), for four-state starting (dashed line)
and trained (solid line) models with respect to real data (point–solid line).

average delay for two-, three-, and four-state starting and trained
models compared with real data.

B. Example II

The same steps of Section IV-A are briefly described in the
following, with reference to measures performed in April 2003
between Università Campus Bio-Medico di Roma and Diparti-
mento di Ingegneria dell’Informazione, Seconda Università di
Napoli, in which the interdeparture time is 10 ms, and
the packet size is 4000 b 0.4 Mb/s . The In-
ternet path was composed of eight wired links (obtained by use
of traceroute). The path has a bottleneck link of 0.5 Mb/s
(nominal bandwidth).

Figs. 18–24 and Tables V–VIII refer to this example. Also
in this case, the convergence during the learning algorithm is
reached in a few iterations (see Fig. 18). The histogram of the
training sequence shows a clear bimodal behavior that makes
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Fig. 18. Log-likelihood trend in the learning procedure (Example II).

three-state and four-state models very close to the two-state
model (see Fig. 19).

437.55 ms

439.36 ms

436.65 ms

556.44 ms

570.25 ms

558.81 ms

It can be noted that increasing the number of states of the
model do not take any real advantage (see also previous equa-
tions). Because of the bimodal behavior of the channel, models
with more than two states use their states to capture some tran-
sient behavior (see also Tables VII and VIII) from the principal
two situations that have no practical relevance. This can also
be noted via state-sequence estimation. Fig. 20 refers to state

Fig. 19. Learning delays statistics (Example II): histogram of measured delays
(the bin size is 5 ms) and continues term of pdf of two-, three-, and four-state
starting (dashed line) and trained (solid line) models, respectively.

Fig. 20. State-sequence estimation (Example II): training sequence and two-,
three-, and four-state trained models, respectively.

estimation for the training sequence, while Fig. 22 to state esti-
mation for sequence . Both of them show two different local
behaviors of the channel. Fig. 21 shows the log-likelihood for
test sequences evaluated for starting and trained models, while
Fig. 23 shows the statistics of the starting and trained two-state
models when used as channel simulators. Also in this case, the
parameters of the trained models hold for sufficient time, i.e.,
the HMM-based strategy confirms its generalization capability.
Fig. 24 shows the relations among the states of different trained
models.

On the basis of the two examples previously described and
other experiments that have been performed, the HMM-based
modeling appears to be a good strategy as it is able to capture
both loss and delay characteristics quite well.

Stable behavior of the states of a trained model suggests
investigating on the possibility of supporting adaptive services
mechanisms. Such online modeling features can be exploited
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Fig. 21. Capacity of generalization of the model by means of the
log-likelihood (Example II).

Fig. 22. State-sequence estimation after learning (sequence n: 3, Example II):
test sequence and two-, three-, and four-state models, respectively.

to support device independent services as defined by the cor-
responding W3C working group,2 according to the scheme
shown in Fig. 25. Such a scheme needs losses and delays to be
monitored to train an HMM, like the one previously described.
Then state-sequence estimation could be used to foresee the
short-term future behavior of the channel. This information
could be sent back to the sender in order to adapt transmission.
This strategy would clearly require that sufficient stationarity
of the channel exists to make adaptive coding strategies worth
the effort. We are working on optimum design for distributing
information over packets [21], [25], we are working on the
extension of the model to the case of nonperiodic UDP traffic
[23], and we are working on adaptive transmission bit rate
[24]; this would require that the estimated model holds for
(slowly) variable interdeparture time or, better, would require

2W3C—Device Independence Working Group. [Online]. Avaliable:
http://www.w3c.org/2001/di/

Fig. 23. Synthesis model capability in terms of throughput, correlation, loss
and delay statistics, respectively (Example II), for two-state starting (dashed
line) and trained (solid line) models with respect to real date (point–solid line).

Fig. 24. Correspondences among states of the trained models (Example II).

an extension of the model to a more general scheme with a
variable interdeparture time source. We believe this is possible
in many practical situations, and we are currently pursuing such
an effort.

When adaptive coding is not possible, or not worth the effort,
good channel modeling can be very useful to evaluate perfor-
mance of existing coders.

Other open problems are to determine how much a training
sequence can be reduced, taking into account the tradeoff be-
tween the complexity and the frequency of the training step, as
well as the proposal of a threshold algorithm evaluating when
the training step has to be run again.

V. CONCLUSION

In this paper, we have proposed a Bayesian network with
the objective of modeling end-to-end packet channel behavior,
jointly capturing loss and delay characteristics. The proposed
model generalizes the HMM description of real channels in-
troducing a joint stochastic modeling of losses and delays. A
training procedure, based on the EM algorithm, to learn pa-
rameters of the equivalent HMM was derived. Preliminary re-
sults are very encouraging, as the HMM is able to capture well
loss and delay characteristics of the network. Tests run on real
packets links showed how trained models exhibit good gen-
eralization capabilities. We also discussed the significance of
hidden states automatically found by the training algorithm,
showing how they can be associated to particular congestion
levels of the network. Monitoring or even prediction of hidden
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Fig. 25. Scheme for an adaptive communication protocol.

TABLE V
AVERAGE AND TRAINING STATISTICS COMPARISON (EXAMPLE II)

TABLE VI
STATE-CONDITIONED STATISTICS FOR A TWO-STATE MODEL (EXAMPLE II)

TABLE VII
STATE-CONDITIONED STATISTICS FOR A THREE-STATE MODEL (EXAMPLE II)

TABLE VIII
STATE-CONDITIONED STATISTICS FOR A FOUR-STATE MODEL (EXAMPLE II)

states should be very effective in the implementation of con-
tent-adaptive communication strategies. Future works will be
directed toward model improvements and development of con-
tent-adaptive strategies based on hidden-state knowledge. Other
interesting aspects are modifications of the model to verify its
usefulness in a TCP scenario where states could be used to dis-
tinguish different typologies of losses (errors, congestion, etc.),
as well as to take into account for different metrics such as in-
terloss distribution and delay variation.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and the
anonymous reviewers for dedicating their time to the final ver-
sion of this manuscript.

REFERENCES

[1] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J.,
vol. 39, pp. 1253–1265, Sep. 1960.

[2] E. O. Elliott, “Estimates of error-rate for codes on burst-noise channels,”
Bell Syst. Tech. J., vol. 42, pp. 1977–1997, Sep. 1963.

[3] L. A. Liporace, “Maximum likelihood estimation for multivariate obser-
vations of Markov sources,” IEEE Trans. Inf. Theory, vol. IT-28, no. 5,
pp. 729–734, Sep. 1982.

[4] B. H. Juang, S. E. Levinson, and M. M. Sondhi, “Maximum likelihood
estimation for multivariate mixture observations of Markov chains,”
IEEE Trans. Inf. Theory, vol. IT-32, no. 2, pp. 307–309, Mar. 1986.

[5] L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–285,
Feb. 1989.

[6] W. Turin and M. M. Sondhi, “Modeling error sources in digital chan-
nels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 340–347, Apr.
1993.

[7] J. C. Bolot, “Characterizing end-to-end packet delay and loss in the in-
ternet,” J. High-Speed Netw., vol. 2, no. 3, pp. 305–323, Dec. 1993.

[8] M. Zorzi, R. R. Rao, and L. B. Milstein, “On the accuracy of a first-order
Markov model for data block transmission on fading channels,” in Proc.
IEEE Int. Conf. Personal Communications, Nov. 1995, pp. 211–215.

[9] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models,”
University of Berkeley, CA, Tech. Rep. ICSI-TR-97-021, 1998.

[10] W. Turin and R. van Nobelen, “Hidden Markov modeling of flat fading
channels,” IEEE J. Sel. Areas Commun., vol. 16, no. 9, pp. 1809–1817,
Dec. 1998.

[11] V. Paxson, “End-to-end internet packet dynamics,” IEEE Trans. Netw.,
vol. 7, no. 3, pp. 277–292, Jun. 1999.

[12] W. Jiang and H. Schulzrinne, “Modeling of packet loss and delay and
their effect on real-time mulrimedia service quality,” presented at the Int.
Workshop Network Operating System Support for Digital Audio Video,
Chapel Hill, NC, Jun. 26–28, 2000.

[13] K. Salamatian and S. Vaton, “Hidden Markov modeling for network
communication channels,” in Proc. ACM Sigmetrics/Performance, vol.
29, 2001, pp. 92–101.

[14] V. K. Goyal and J. Kovacevic, “Generalized multiple description coding
with correlating transforms,” IEEE Trans. Inf. Theory, vol. 47, no. 6, pp.
2199–2224, Sep. 2001.

[15] J. Liu, I. Matta, and M. Crovella, “End-to-end inference of loss nature
in a hybrid wired/wireless environment,” presented at the Modeling Op-
timization in Mobile, Ad Hoc, Wireless Networks, Sophia Antipolis,
France, Mar. 3–5, 2003.

[16] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal, and P.
Van Mieghem, “Analysis of end-to-end delay measurements in internet,”
in Proc. Passive Active Measurement Workshop, Mar. 2002, pp. 26–33.

[17] S. Avallone, M. D’Arienzo, M. Esposito, A. Pescapé, S. P. Romano, and
G. Ventre, “Mtools,” IEEE Network (Networking Column), vol. 16, no.
5, p. 3, Sep./Oct. 2002.

[18] P. Salvo Rossi, G. Romano, F. Palmieri, and G. Iannello, “Bayesian mod-
eling for packet channels,” in Proc. Italian Workshop Neural Nets, vol.
2859/2003, Jun. 2003, pp. 218–225.

[19] , “A hidden Markov model for internet channels,” in Proc. IEEE
Int. Symp. Signal Processing Information Technology, Dec. 2003, pp.
50–53.

[20] S. Avallone, A. Pescapé, and G. Ventre, “Analysis and experimentation
of internet traffic generator,” presented at the Int. Conf. Next Genera-
tion Teletraffic Wired/Wireless Advanced Networking, St. Petersburg,
Russia, Feb. 2–6, 2004.

[21] P. Salvo Rossi, G. Romano, F. Palmieri, and G. Iannello, “Interleaving
for Packet Channels,” in Proc. Conf. Information Sciences Systems, Mar.
2004, pp. 1560–1564.

[22] P. Salvo Rossi, F. Palmieri, and G. Iannello, “HMM-based monitoring
of end-to-end packet channels,” in Proc. IEEE Int. Conf. High Speed
Network Multimedia Communications, vol. 3079/2004, Jun. 2004, pp.
144–154.



SALVO ROSSI et al.: JOINT END-TO-END LOSS–DELAY HMM FOR PERIODIC UDP TRAFFIC OVER THE INTERNET 541

[23] P. Salvo Rossi, A. P. Petropulu, J. Yu, F. Palmieri, and G. Iannello,
“Internet loss-delay modeling by use of input/output hidden Markov
models,” in Proc. IEEE Int. Workshop Multimedia Signal Processing,
Sep. 2004, pp. 470–473.

[24] S. Avallone, P. Salvo Rossi, V. La Marca, G. Iannello, F. Palmieri, and G.
Ventre, “Congestion control for UDP Traffic,” in Proc. IEEE Int. Symp.
Signal Processing Information Technology, Dec. 2004, pp. 258–261.

[25] P. Salvo Rossi, F. Palmieri, G. Iannello, and A. P. Petropulu, “Packet In-
terleaving over Lossy Channels,” in Proc. IEEE Int. Symp. Signal Pro-
cessing Information Technology, Dec. 2004, pp. 476–479.

Pierluigi Salvo Rossi was born in Naples, Italy, on
April 26, 1977. He received the “Laurea” degree in
telecommunications engineering (summa cum laude)
from University of Naples “Federico II,” Italy, in Jan-
uary 2002 with a thesis on speech prosody modeling.
He is currently working toward the Ph.D. degree in
computer engineering at the Department of Computer
Science and Systems, University of Naples “Federico
II” and collaborates with the Department of Informa-
tion Engineering, Second University of Naples, Italy.

In 2002, he worked as a Scientific Collaborator
at CIRASS (Interdepartmental Research Center for Signal Analysis and
Synthesis), University of Naples “Federico II.” In 2003, he worked as a Sci-
entific Collaborator with the Department of Information Engineering, Second
University of Naples, Italy. In 2004, he was Visiting Research Scholar at the
Communications and Signal Processing Laboratory (CSPL), Electrical and
Computer Engineering Department, Drexel University, Philadelphia, PA. His
research interests are in the areas of speech processing, signal processing for
communication networks, signal and system modeling, wireless communica-
tions.

Gianmarco Romano received the “Laurea” degree
in electronic engineering from the University of
Naples “Federico II,” Italy, in January 2000. He is
currently working toward the Ph.D. degree in elec-
tronic engineering at the Department of Information
Engineering, Second University of Naples, Italy.

From 2000 to 2002, he was Researcher at CNIT
National Laboratory of Multimedia Communica-
tions, Naples, Italy. In 2004, he was Visiting Scholar
with the Electrical and Computer Engineering
Department, University of Connecticut, Storrs. His

research interests are in the areas of multimedia communications, signal
processing, wireless communications.

Francesco Palmieri was born in S. Maria C.V. (CE),
Italy, on August 28, 1956. He received the “Laurea”
degree in electronic engineering (summa cum laude)
from University of Naples “Federico II,” Italy, in
1980 and the M.S. degree in applied sciences and
the Ph.D. degree in electrical engineering from the
University of Delaware, Newark, in 1985 and 1987,
respectively.

In 1981, he served as a second Lieutenant in the
Italian Army in fulfillment of draft duties. In 1982
and 1983, he was a designer of digital telephone sys-

tems with ITT, FACE SUD Selettronica, Salerno, Italy, and Bell Telephone Man-
ufacturing Company, Antwerpen, Belgium. He was appointed Assistant Pro-
fessor in Electrical and Systems Engineering, University of Connecticut, Storrs,
in 1987, where he was awarded tenure and was promoted to Associate Pro-
fessor in 1993. From 1993 to 2000, he was Associate Professor in electrical
communications with the University of Naples “Federico II.” He is currently
Full Professor in telecommunications with the Department of Information En-
gineering, Second University of Naples, Italy. His research interests are in the
areas of signal processing, electrical communications, information theory, and
neural networks.

Dr. Palmieri was awarded a Fulbright Scholarship from the University of
Delaware in 1983.

Giulio Iannello was born in Rome, Italy, on August
17, 1957. He received the Electronic Engineering
degree (summa cum laude) from the Politecnico di
Milano, Milan, Italy, in 1981 and the Ph.D. degree
in computer science from the University of Naples,
“Federico II,” Italy, in 1987.

In 1987, he joined the Department of Information
Engineering and Applied Mathematics of the Univer-
sity of Salerno, Salerno, Italy, where he was a Senior
Researcher until October 1992. In November 1992,
he joined the Department of Computer Science and

Systems of the University of Naples “Federico II,” where he was an Asso-
ciate Professor until October 2000. From November 2000 until April 2004, he
was Full Professor at the same Department. He is currently Full Professor at
University Campus Bio-Medico of Rome, Italy. He participated in several re-
search projects funded by the Ministry of University and by the National Re-
search Council. He is currently responsible for a work package in the FIRB
(Fondo per gli Investimenti della Ricerca di Base) Project on “Middleware for
advanced services over large-scale, wired-wireless distributed systems (WEB-
MINDS).” His primary research interests include design and analysis of parallel
algorithms, performance evaluation of parallel and distributed systems, commu-
nication software for high-performance interconnection networks, network pro-
tocols for Quality of Service (QoS), wireless networks. He has published more
than 50 journal and conference papers in these areas.

Dr. Iannello is a member of the IEEE Computer Society, the Association for
Computing Machinery (ACM), and the Associazione Italiana per l’Informatica
ad il Calcolo Automatico (AICA).


	toc
	Joint End-to-End Loss Delay Hidden Markov Model for Periodic UDP
	Pierluigi Salvo Rossi, Gianmarco Romano, Francesco Palmieri, and
	I. I NTRODUCTION

	Fig.€1. End-to-end packet channel.
	II. T HE M ODEL

	Fig.€2. Bayesian model for packet channel.
	Fig.€3. Hidden Markov model.
	Fig.€4. State-conditioned pdf for the hybrid variable.
	III. L EARNING THE M ODEL P ARAMETERS
	IV. E XPERIMENTAL R ESULTS

	Fig.€5. Portion of a measured trace on a real network.
	A. Example I
	1) Training: Fig.€6 shows a typical trend of log-likelihood evol


	Fig.€6. Log-likelihood trend in the learning procedure (Example 
	TABLE€I A VERAGE AND T RAINING S TATISTICS C OMPARISON (E XAMPL
	TABLE€II S TATE -C ONDITIONED S TATISTICS FOR A T WO -S TATE M 
	TABLE€III S TATE -C ONDITIONED S TATISTICS FOR A T HREE -S TATE
	TABLE€IV S TATE -C ONDITIONED S TATISTICS FOR A F OUR -S TATE M
	Fig.€7. Learning delays statistics (Example I): histogram of mea
	Fig.€8. State-sequence estimation (Example I): training sequence
	Fig.€9. Correspondences among states of the trained models (Exam
	2) Model Generalization: A trained model, to be useful, has to b

	Fig.€10. Capacity of generalization of the model by means of the
	Fig.€11. State-sequence estimation before learning (sequence $n.
	Fig.€12. State-sequence estimation after learning (sequence $n.\
	Fig.€13. State-sequence estimation before learning (sequence $n.
	3) Generative Model: The trained models have also been used as g

	Fig.€14. State-sequence estimation after learning (sequence $n.\
	Fig.€15. Synthesis model capability in terms of throughput, corr
	Fig.€16. Synthesis model capability in terms of throughput, corr
	Fig.€17. Synthesis model capability in terms of throughput, corr
	B. Example II

	Fig.€18. Log-likelihood trend in the learning procedure (Example
	Fig.€19. Learning delays statistics (Example II): histogram of m
	Fig.€20. State-sequence estimation (Example II): training sequen
	Fig.€21. Capacity of generalization of the model by means of the
	Fig.€22. State-sequence estimation after learning (sequence $n.\
	Fig.€23. Synthesis model capability in terms of throughput, corr
	Fig.€24. Correspondences among states of the trained models (Exa
	V. C ONCLUSION

	Fig.€25. Scheme for an adaptive communication protocol.
	TABLE€V A VERAGE AND T RAINING S TATISTICS C OMPARISON (E XAMPL
	TABLE€VI S TATE -C ONDITIONED S TATISTICS FOR A T WO -S TATE M 
	TABLE€VII S TATE -C ONDITIONED S TATISTICS FOR A T HREE -S TATE
	TABLE€VIII S TATE -C ONDITIONED S TATISTICS FOR A F OUR -S TATE
	E. N. Gilbert, Capacity of a burst-noise channel, Bell Syst. Tec
	E. O. Elliott, Estimates of error-rate for codes on burst-noise 
	L. A. Liporace, Maximum likelihood estimation for multivariate o
	B. H. Juang, S. E. Levinson, and M. M. Sondhi, Maximum likelihoo
	L. R. Rabiner, A tutorial on hidden Markov models and selected a
	W. Turin and M. M. Sondhi, Modeling error sources in digital cha
	J. C. Bolot, Characterizing end-to-end packet delay and loss in 
	M. Zorzi, R. R. Rao, and L. B. Milstein, On the accuracy of a fi
	J. A. Bilmes, A gentle tutorial of the EM algorithm and its appl
	W. Turin and R. van Nobelen, Hidden Markov modeling of flat fadi
	V. Paxson, End-to-end internet packet dynamics, IEEE Trans. Netw
	W. Jiang and H. Schulzrinne, Modeling of packet loss and delay a
	K. Salamatian and S. Vaton, Hidden Markov modeling for network c
	V. K. Goyal and J. Kovacevic, Generalized multiple description c
	J. Liu, I. Matta, and M. Crovella, End-to-end inference of loss 
	C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal, 
	S. Avallone, M. D'Arienzo, M. Esposito, A. Pescapé, S. P. Romano
	P. Salvo Rossi, G. Romano, F. Palmieri, and G. Iannello, Bayesia
	S. Avallone, A. Pescapé, and G. Ventre, Analysis and experimenta
	P. Salvo Rossi, G. Romano, F. Palmieri, and G. Iannello, Interle
	P. Salvo Rossi, F. Palmieri, and G. Iannello, HMM-based monitori
	P. Salvo Rossi, A. P. Petropulu, J. Yu, F. Palmieri, and G. Iann
	S. Avallone, P. Salvo Rossi, V. La Marca, G. Iannello, F. Palmie
	P. Salvo Rossi, F. Palmieri, G. Iannello, and A. P. Petropulu, P



